# 数据结构:平衡二叉树 AVL Tree

作者:小傅哥
博客:https://bugstack.cn (opens new window)

沉淀、分享、成长,让自己和他人都能有所收获!😄

# 一、前言

AVL树历史

在计算机科学中,AVL 树以其两位苏联发明家Georgy Adelson-Velsky和 Evgenii Landis的名字命名,他们在 1962 年的论文“信息组织算法”中发表了它。它是一种自平衡二叉搜索树(BST),这是发明的第一个这样的数据结构。

# 二、AVL树数据结构

AVL 自平衡二叉树的出现,其目的在于解决二叉搜索树退化成链表的问题。当我们向BST二叉搜索树顺序存入1、2、3、4、5、6、7个元素时,它会退化成一条链表,因而失去树查询的时间复杂度,所以我们需要AVL树平衡树高。如图所示

那么AVL树是怎么平衡树高的呢?

当二叉树的左右分支树高差不为1时,需要进行左旋或者右旋,来调衡树高。这有点像开车的时候,如果车头偏左就往右打方向盘,车头偏右就往左打方向盘是一个道理。那这个方向盘(左旋、右旋)是怎么打的呢,主要分以下四种情况;

左旋(新增节点6) 右旋(新增节点1) 左旋+右旋(新增节点4) 右旋+左旋(新增节点3)
条件:节点4,平衡因子为-2,左旋 条件:节点3,平衡因子为2,右旋 条件:节点5,平衡因子为2,右旋。但当节点2平衡因子-1先左旋。 条件:节点2,平衡因子为-2,左旋。但当节点5平衡因子1先右旋。

# 三、AVL树代码实现

对于 AVL 树的实现与 BST 二叉搜索树相比,在树的节点定义上多了一个树高的属性。也有些AVL树使用的是平衡因子的属性,就是通过树高计算后的结果。树节点代码结构如下;

public class Node {

    public Class<?> clazz;
    public Integer value;
    public Node parent;
    public Node left;
    public Node right;
    // AVL 树所需属性
    public int height;
    
}    
1
2
3
4
5
6
7
8
9
10
11

接下来小傅哥就分别通过代码讲解下一颗AVL树的左旋、右旋、左旋+右旋、右旋+左旋的代码操作。不要担心这没有多复杂,只要你能搞清楚左旋,就能搞清楚右旋。两旋弄懂组合就没啥难度了。

# 1. 左旋

图解左旋操作;它就是一种摘链更换调整节点的处理过程,小傅哥把它分解展示,整个过程如下;

代码实现

protected Node rotateLeft(Node node) {
    Node temp = node.right;
    temp.parent = node.parent;
  
    node.right = temp.left;
    if (node.right != null) {
        node.right.parent = node;
    }
  
    temp.left = node;
    node.parent = temp;
  
    if (temp.parent == null) {
        root = temp;
    } else {
        if (temp.parent.left == node) {
            temp.parent.left = temp;
        } else {
            temp.parent.right = temp;
        }
    }
    return temp;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. 左旋的作用,相当于通过向上迁移树高差大于1的右子节点来降低树高的操作。
  2. 通过节点4拿到父节点2和右子节点5,把父节点2和右子节点5建立关联
  3. 节点5的左子节点,相当于是大于4的那么一个值,只不过这里不体现。那么这个节点5的左子节点,应该被迁移到节点4的右子节点上。
  4. 整理节点5的关系,左子节点为4。左子节点4的父节点为5
  5. 如果说迁移上来的节点5无父节点,那么它就是父节点 root = temp
  6. 迁移上来的节点5,找到原节点4是对应父节点的左子节点还是右子节点,对应的设置节点5的左右位置

# 2. 右旋

图解右旋操作;它就是一种摘链更换调整节点的处理过程,小傅哥把它分解展示,整个过程如下;

代码实现

protected Node rotateRight(Node node) {
    Node temp = node.left;
    temp.parent = node.parent;
    node.left = temp.right;
    if (node.left != null) {
        node.left.parent = node;
    }
    temp.right = node;
    node.parent = temp;
    if (temp.parent == null) {
        root = temp;
    } else {
        if (temp.parent.left == node) {
            temp.parent.left = temp;
        } else {
            temp.parent.right = temp;
        }
    }
    return temp;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
  1. 右旋的作用,相当于通过向上迁移树高差大于1的右子节点来降低树高的操作。
  2. 通过节点3拿到父节点4和左子节点2,把父节点7和左子节点2建立关联
  3. 节点2的右子节点,相当于是大于2小于3的那么一个值,只不过这里不体现。那么这个节点2的右子节点,应该被迁移到节点3的左子节点上。
  4. 整理节点2的关系,右子节点为3。右子节点3的父节点为2
  5. 如果说迁移上来的节点2无父节点,那么它就是父节点 root = temp
  6. 迁移上来的节点2,找到原节点3是对应父节点的左子节点还是右子节点,对应的设置节点2的左右位置

# 3. 左旋 + 右旋

之所以会有左旋 + 右旋,是因为一次右旋操作没法平衡树高,而这种树的不平衡节点的左子节点的右子节点过长,所以要把不平衡节点的左子节点向左旋转一次,之后再进行右旋操作。

代码实现

if (factor(node.left) >= 0) {
    Node temp = super.rotateRight(node);
    refreshHeight(temp.right);
    refreshHeight(temp);
} else {
    Node temp = super.rotateLeft(node.left);
    refreshHeight(temp.left);
    refreshHeight(temp);
    node.left = temp;
    
    temp = super.rotateRight(node);
    refreshHeight(temp.right);
    refreshHeight(temp);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 4. 右旋 + 左旋

之所以会有右旋 + 左旋,是因为一次左旋操作没法平衡树高,而这种树的不平衡节点的右子节点的左子节点过长,所以要把不平衡节点的右子节点向右旋转一次,之后再进行左旋操作。

  • fix:中间图为6

代码实现

if (factor(node.right) <= 0) {
    Node temp = super.rotateLeft(node);
    refreshHeight(temp.left);
    refreshHeight(temp);
} else {
    Node temp = super.rotateRight(node.right);
    refreshHeight(temp.right);
    refreshHeight(temp);
    node.right = temp;
    
    temp = super.rotateLeft(node);
    refreshHeight(temp.left);
    refreshHeight(temp);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 四、AVL树功能测试

为了验证AVL树的实现正确与否,这里我们做一下随机节点的插入,如果它能一直保持平衡,那么它就是一颗可靠 AVL 平衡树。

单元测试

@Test
public void test_random() {
    AVLTree tree = new AVLTree();
    for (int i = 0; i < 30; i++) {
        tree.insert(new Random().nextInt(100));
    }
    System.out.println(tree);
}
1
2
3
4
5
6
7
8

测试结果

输入节点:61,3,34,82,1,75,56,65,87,18,3,96,53,50,42,24,69,11,95,69,1,1,84,22,5,70,28,55,38,92

                         /----- 96(0)
                 /----- 95(1)
                 |       \----- 92(0)
         /----- 87(2)
         |       |       /----- 84(0)
         |       \----- 82(1)
 /----- 75(3)
 |       |               /----- 70(0)
 |       |       /----- 69(1)
 |       \----- 69(2)
 |               \----- 65(0)
61(5)
 |               /----- 56(1)
 |               |       \----- 55(0)
 |       /----- 53(2)
 |       |       |       /----- 50(0)
 |       |       \----- 42(1)
 |       |               \----- 38(0)
 \----- 34(4)
         |                       /----- 28(0)
         |               /----- 24(1)
         |               |       \----- 22(0)
         |       /----- 18(2)
         |       |       \----- 11(1)
         |       |               \----- 5(0)
         \----- 3(3)
                 |       /----- 3(1)
                 |       |       \----- 1(0)
                 \----- 1(2)
                         \----- 1(0)


Process finished with exit code 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  • 随机插入30个节点,每个节点的顺序已经打印,经过AVL左右旋调衡后,二叉结构始终保持树高平衡因子不超过1,那么验证通过。

# 五、常见面试题

  • AVL 树平衡因子怎么计算?
  • AVL 树左旋操作的目的是什么?
  • AVL 树左旋操作的流程是什么?
  • AVL 树什么情况下要左旋+右旋?
  • AVL 树的插入和读取的时间复杂度?